Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0131416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146837

RESUMO

Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, ß-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and ß-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and ß-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.


Assuntos
Cílios/metabolismo , Células Epiteliais/citologia , Túbulos Renais/citologia , Rim/citologia , Estresse Mecânico , Junções Íntimas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caderinas/metabolismo , Claudina-2/metabolismo , Células Epiteliais/metabolismo , Humanos , Rim/metabolismo , Túbulos Renais/metabolismo , Camundongos , Tubulina (Proteína)/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/metabolismo
2.
J Am Soc Nephrol ; 26(6): 1363-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25270069

RESUMO

Rhabdomyolysis can be life threatening if complicated by AKI. Macrophage infiltration has been observed in rat kidneys after glycerol-induced rhabdomyolysis, but the role of macrophages in rhabdomyolysis-induced AKI remains unknown. Here, in a patient diagnosed with rhabdomyolysis, we detected substantial macrophage infiltration in the kidney. In a mouse model of rhabdomyolysis-induced AKI, diverse renal macrophage phenotypes were observed depending on the stage of the disease. Two days after rhabdomyolysis, F4/80(low)CD11b(high)Ly6b(high)CD206(low) kidney macrophages were dominant, whereas by day 8, F4/80(high)CD11b(+)Ly6b(low)CD206(high) cells became the most abundant. Single-cell gene expression analyses of FACS-sorted macrophages revealed that these subpopulations were heterogeneous and that individual cells simultaneously expressed both M1 and M2 markers. Liposomal clodronate-mediated macrophage depletion significantly reduced the early infiltration of F4/80(low)CD11b(high)Ly6b(high)CD206(low) macrophages. Furthermore, transcriptionally regulated targets potentially involved in disease progression, including fibronectin, collagen III, and chemoattractants that were identified via single-cell analysis, were verified as macrophage-dependent in situ. In vitro, myoglobin treatment induced proximal tubular cells to secrete chemoattractants and macrophages to express proinflammatory markers. At day 30, liposomal clodronate-mediated macrophage depletion reduced fibrosis and improved both kidney repair and mouse survival. Seven months after rhabdomyolysis, histologic lesions were still present but were substantially reduced with prior depletion of macrophages. These results suggest an important role for macrophages in rhabdomyolysis-induced AKI progression and advocate the utility of long-term follow-up for patients with this disease.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Macrófagos/metabolismo , Mioglobina/metabolismo , Rabdomiólise/complicações , Rabdomiólise/fisiopatologia , Animais , Células Cultivadas , Ácido Clodrônico/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Citometria de Fluxo , Glicerol/farmacologia , Humanos , Macrófagos/classificação , Macrófagos/patologia , Masculino , Camundongos , Mioglobina/efeitos dos fármacos , Distribuição Aleatória , Fatores de Risco , Sensibilidade e Especificidade
3.
PLoS One ; 8(10): e76703, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098551

RESUMO

Metabolic syndrome can induce chronic kidney disease in humans. Genetically engineered mice on a C57BL/6 background are highly used for mechanistic studies. Although it has been shown that metabolic syndrome induces cardiovascular lesions in C57BL/6 mice, in depth renal phenotyping has never been performed. Therefore in this study we characterized renal function and injury in C57BL/6 mice with long-term metabolic syndrome induced by a high fat and fructose diet (HFFD). C57BL/6 mice received an 8 months HFFD diet enriched with fat (45% energy from fat) and drinking water enriched with fructose (30%). Body weight, food/water consumption, energy intake, fat/lean mass ratio, plasma glucose, HDL, LDL, triglycerides and cholesterol levels were monitored. At 3, 6 and 8 months, renal function was determined by inulin clearance and measure of albuminuria. At sacrifice, kidneys and liver were collected. Metabolic syndrome in C57BL/6 mice fed a HFFD was observed as early 4 weeks with development of type 2 diabetes at 8 weeks after initiation of diet. However, detailed analysis of kidney structure and function showed only minimal renal injury after 8 months of HFFD. HFFD induced moderate glomerular hyperfiltration (436,4 µL/min vs 289,8 µL/min; p-value=0.0418) together with a 2-fold increase in albuminuria only after 8 months of HFFD. This was accompanied by a 2-fold increase in renal inflammation (p-value=0.0217) but without renal fibrosis or mesangial matrix expansion. In addition, electron microscopy did not show alterations in glomeruli such as basal membrane thickening and foot process effacement. Finally, comparison of the urinary peptidome of these mice with the urinary peptidome from humans with diabetic nephropathy also suggested absence of diabetic nephropathy in this model. This study provides evidence that the HFFD C57BL/6 model is not the optimal model to study the effects of metabolic syndrome on the development of diabetic kidney disease.


Assuntos
Albuminúria/urina , Diabetes Mellitus Tipo 2/urina , Dieta Hiperlipídica , Frutose/efeitos adversos , Rim/metabolismo , Fígado/metabolismo , Síndrome Metabólica/urina , Albuminúria/induzido quimicamente , Albuminúria/patologia , Animais , Glicemia/metabolismo , Peso Corporal , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/patologia , Ingestão de Energia , Rim/patologia , Fígado/patologia , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...